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DEVELOPMENT OF A NONLINEAR UNSTEADY 

TRANSONIC FLOW THEORY 

By Stephen S. Stahara and John R. Spreiter* 
Nielsen Engineering & Research, Inc. 

SUMMARY 

A preliminary investigation was conducted to develop the basis of a 
nonlinear, unsteady, small-disturbance theory capable of predicting inviscid 
transonic flows about aerodynamic configurations undergoing both rigid body 
and elastic oscillations. The theory is based on the concept of dividing 
the flow into steady and unsteady components and then solving, by the 
method of local linearization, the coupled differential equation for the 
unsteady surface pressure distribution. 

The appropriate equations, valid at all frequencies, have been derived 
for two-dimensional flows at MoD = 1, and numerical results obtained for 
two classes of airfoils and two types of oscillatory motions. The results 
indicate that the theory smoothly and correctly converges to nonlinear 
quasi-steady theory as the reduced frequency of oscillation based on chord 
E+O and to linear acoustic theory as E becomes large (E ,> 2). Moreover, 
at low frequencies (E = 0.1) the theory shows quantitatively the large non- 
linear thickness effects induced on the unsteady flow by the steady motion 
and the complete inadequacy of linear theory in this frequency regime. 

INTRODUCTION 

The basic reason for developing an accurate unsteady transonic flow 
theory lies in the need to predict aerodynamic flutter and its associated 
dynamic instabilities, which are more likely to occur in the transonic 
regime than in any other. In view of emerging technological needs, however, 
such as those associated with the design of a transonic transport, the 
present state of unsteady transonic aerodynamics is clearly inadequate. 

*Professor, Departments of Applied Mechanics and Aeronautics and Astro- 
nautics, Stanford University, Stanford, California. (Consultant at 
Nielsen Engineering & Research, Inc.). 
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while some work has been done (see refs. l-4), such technically important 
problems as one-degree-of-freedom control surface flutter (control surface 
buzz) and the determination of stability derivatives at low reduced fre- 
quencies, to say nothing of the more general problem of predicting pressures 
on arbitrary oscillating surfaces at transonic speeds, remain essentially 
unsolved at the present time. Unless the frequency of oscillation is 
sufficiently high or the configuration of a special nature, agreement of 
existing theoretical results and data is not satisfactory (ref. 3). The 
reason for these discrepancies stems from the linearization of the governing 
differential equations, which are fundamentally nonlinear in this speed 
regime. Consequently, it is clear that an adequate analysis of unsteady 
transonic flows must include at least some of the nonlinear effects present 
and one of the goals of this investigation is to identify and include the 
most important of these effects. 

Perhaps the primary reason for the relatively slow development of 
unsteady transonic aerodynamics is that, until recently, there existed a 
notable paucity of techniques for accurately predicting the steady tran- 
sonic flow about realistic aerodynamic shapes. Current research, however, 
has changed that situation so that the accurate theoretical treatment of 
realistic two- and three-dimensional steady transonic flows (refs. 5-10) 
is now possible. This is of major importance to the present technique 
which makes use of the nonlinear steady solution in determining the 
unsteady flow. 

Although the ultimate goal of this investigation is to evolve pre- 
dictive methods for calculating unsteady pressures, forces, and moments 
acting on general aerodynamic configurations throughout the transonic 
regime, the purpose of this preliminary study is to develop the basis of 
a nonlinear unsteady theory capable of accurately predicting transonic 
flows about airfoils undergoing both rigid-body and elastic oscillations. 

LIST OF SYMBOLS 

Al 

AZ? 

equal to X,/2A, 

equal to (X,/2AJ dz 
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C 

C 
P 

C 
PI 

;: P 

-e 
P 

c 
P 

f 

F 

g 

IO 

T; 

KO 

Kl 

K2 

Mc-0 

R 

ii 

t 

reference length: for two-dimensional flows, equal to chord 
length; for axisymmetric flows, equal to body length 

total pressure coefficient, equations (26) and (71) 

steady-state pressure coefficient, equation (25) 

unsteady pressure coefficient, equation (25) 

similarity form of steady pressure coefficient, equations (27) 
and (72) 

similarity form of unsteady pressure coefficient, equations (28) 
and (73) 

equal to di(x)/dx + iri(x) 

function describing body surface, equation (11) 

equal to E(x)[dR(x)/dx + ikR(x)] 

zero-order modified.Bessel function of first kind 

reduced oscillatory frequency based on chord, WC/U, 

zero-order modified Bessel function of second kind 

similarity parameter, equal ~3 Mi - l/[M;r(y + 1)]2'3 

similarity parameter, equal to WE (Y + 1) , equations (24) and 
(70) 

free stream Mach number 

dimensionless total body radius, normalized by c; equation (60) 

dimensionless affine function describing steady-state body radius, 
equation (60) 

dimensionless affine function describing amplitude of unsteady 
radial perturbation, equation (60) 

nondimensional time, normalized by c/urn 

free stream-velocity 

JI - 



(X,Y,Z) nondimensional, body-fixed Cartesian coordinate system with x 
axis directed rearward and aligned with longitudinal axis of 
body, Y axis directed to the right facing forward, and z 
axis directed vertically upward; coordinates normalized by c 

X* location of steady-state sonic point, normalized by c 

2 dimensionless total wing or airfoil ordinates, normalized by c; 
equation (9) 

Z, dimensionless steady-state airfoil ordinates, normalized by c; 
equation (79) 

z dimensionless affine function describing steady-state wing or 
airfoil ordinates, equation (9) 

i dimensionless affine function describing amplitude of unsteady 
wing or airfoil ordinate perturbation, equation (9) 

Y 

6 

E 

El 

ratio of specific heats 

dimensionless amplitude of unsteady oscillation, normalized by c 

expansion parameter for steady flow, equations (16) and (63) 

expansion parameter for unsteady flow, equations (17) and (64) 

normalized similarity form of z ordinate, equation (18) 

equal to TX + K, 

equal to Txx + iK, 

equal to - j;K,/2 

515, dummy variables 

normalized similarity form of radial ordinate, equation (65) 

airfoil, wing, or body thickness ratio 

dimensionless total perturbation velocity potential, equations (6) 
and (59) 

dimensionless steady-state perturbation velocity potential, 
equations (6) and (59) 

i amplitude of dimensionless unsteady perturbation velocity 
potential, equations (6) and (59) 
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similarity form of dimensionless steady-state perturbation 
velocity potential, equations (14) and (61) 

similarity form of dimensionless unsteady perturbation velocity 
potential, equations (15) and (62) 

edge-correction potential to z for subsonic flow, equation (58) 

oscillatory frequency, rad/sec 

ANALYSIS 

Partial Differential Equations 

The concept that a major body of steady transonic flow problems can be 
predicted accurately within the framework of inviscid, small-disturbance 
theory without recourse to numerical solutions of the full nonlinear equa- 
tions has been established (refs. 11 and 12) for some time. There is good 
reason to believe that this premise also holds for the unsteady case, 
particularly for small-amplitude flutter and stability calculations. For 
unsteady motions, small-disturbance transonic theory yields the following 
differential equation for the dimensionless perturbation velocity potential 
4 (ref. 3) 

(1 - $)I$~~ + $yy + $zz = M;(Y + l)+x@‘xx + M:@tt + 2M:4xt (1) 

where Mm is the free-stream Mach number, y is the ratio of specific 
heats, (x,y,z) are the spatial coordinates nondimensionalized by some 
reference length c, and t is the nondimensional time normalized by 
c/u, - 

Depending upon the nature of the unsteady motion, equation (1) can 
simplify into various forms. For very fast oscillations, the following 
linear, two-dimensional wave equation holds, 

4 yy + o,, = M:@tt 

while for slightly slower unsteady motions, the more complicated linear 
equation is valid. 

(1 - M:) 4xx + 4yy + 4zz = M:Q + 2M3bxt 

(2) 

(3) 
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For slowly unsteady motion, the following nonlinear equation applies, 

(1 - M:N,, + 4yy + 4zz = M:(Y + 1M,4,, + 2M3,, 

while for very slow (quasi-steady) motions, the same nonlinear equation 
that holds for steady flow applies. 

(1 - M:)4x, + @yy + @zz = M:(Y + l)@x~xx 

solutions to the linear two-dimensional wave equation (eq. (2)) are 
straightforward and not of primary concern here. Miles (ref. 13) has 
treated the linear equation (3) by analytical means for supersonic flows, 
while Landahl (ref. 1) has applied the same equation at M, = 1 to certain 
classes of wings and low aspect ratio wing-body combinations. While many 
important applications remain to be worked out for this equation, it is 
clear from past comparisons with experimental data that some of the non- 
linear features characteristic to problems in this speed regime, which have 
been omitted by this equation, must be included. 

Very little work has been done on solving the more difficult nonlinear 
equation (4). In many practical flutter and stability problems, the reduced 
frequencies are very low and in investigations of dynamic stability, the 
values of aerodynamic stability derivatives as the reduced frequency k -f 0 
are required. Furthermore, it can be shown by the method of matched asymp- 
totic expansions that equation (4) provides the proper solution for a 
relatively wide range of low frequency unsteady motions and that the solu- 
tions of equation (4) converge uniformily as E-+0 to the nonlinear 
quasi-steady results provided by equation (5). Thus, solutions to equa- 
tion (4) contain information about both low frequency and quasi-steady 
nonlinear motions. Consequently, while in this study we will seek solutions 
to the more general nonlinear unsteady small-disturbance equation (l), we 
note that for low frequency motions the simpler nonlinear equation (4) 
could be legitimately used. 

Finally, with regard to steady-state solutions of the nonlinear equa- 
tion (5), several comments are appropriate. First, it has been adequately 
demonstrated (refs. 11 and 12) that solutions of this equation are capable 
of providing good representations of actual steady transonic flows about a 
wide variety of shapes. Applications to thin airfoils (refs. 14, 15, and 
16) finite-span wings (ref. 17), slender bodies of revolution (refs. 15, 
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18, and 19), slender nonaxisymmetric bodies (ref. 8), and even certain 
classes of wing-body combinations (refs. 8, 9, and 10) have confirmed this. 
Consequently, the nonlinear effects associated with a major body of tran- 
sonic flows can be adequately accounted for by inclusion of the @x$xx 
term in equation (5). Furthermore, at this time both exact and approxi- 
mate methods for solving this equation are available as indicated above 
(refs; 5, 6, and 7). 

General Oscillatory Motions 

Fundamental to any study of unsteady aerodynamics is the analysis of 
oscillatory motion. For general oscillatory motions, it is convenient to 
expand the solution into a steady and unsteady component. Thus, we may set 

4(x,y,z,t) = #,(x,y,z) + R.P. G(x,y,z)eiEt} 

where k is the reduced frequency of the oscillatory motion, R.P. signi- 
fies the real part of the complex quantity, 4, is the steady perturbation 
potential, and s is the ampl.itude of the oscillatory potential. Inserting 
equation (6) into the full equation (1) , the following coupled partial 
differential equation is obtained for i. 

(1 - M:) sxx + iyy + izz = M:(Y + 1) (;x;xx + 41 ix, + O1 ix) 
X xx 

(7) 

This equation has variable coefficients, is both nonlinear and of mixed 
elliptic-hyperbolic type and is, in general, more difficult to solve than 
the corresponding one for the steady component (eq. (5)). Since, in 
flutter and stability analysis, the stability of only small-amplitude 
oscillations is normally investigated, it is appropriate to assume that 
the oscillatory flow is a small perturbation on the nonlinear steady flow. 
This is logical inasmuch as oscillations or other unsteady deformations of 
the surfaces of an aircraft should involve only minor deviations from their 
steady-state positions. With this simplification, the governing equation 
for G becomes 

7 



(1 - M:'xx + syy + szz = M~(Y. + l)($, ixx + $1 ;,, + 2iMiEsx - Mtj&$ (8) 
X xx 

which, although being linear remains quite formidable to solve because of 
the variable coefficients and mixed elliptic-hyperbolic type. It is likely, 
however, that solutions of this equation will provide all of the infor- 
mation necessary for an accurate transonic stability analysis. 

With the above approach of splitting the perturbation potential, the 
surface boundary condition can be treated in a very general way, accounting 
for both rigid body and elastic oscillations. For example, for thin wings 
where z (x,y,t) represents the normalized ordinates of the upper surface, 
we can set 

Z(x,y,t) = -c8(x,y) + R.P. iEt hi(x,y)e ) -. (9) 

where T and 6 represent, respectively, the wing thickness ratio and the 
normalized amplitude of the unsteady oscillation. In this representation 
rigid body plunging oscillations can be given by Z(x,y) = 1, pitching 
oscillations about a line at x - x0 by Z(x,y) = (x - x0), elastic longi- 
tudinal oscillations by Z(x,y) = f(y) sin (nnx), etc. Solutions for more 
general unsteady motions such as gust reponse, buffeting, etc., can be 
obtained by superposition of such oscillatory solutions. 

The surface boundary condition for the oscillatory component is found 
from the expression 

g + grad (x + $)-grad F = 0 on F(x,y,z,t) = 0 (10) 

where 

F(x,y,z,t) = z - Z(x,y,t) 

with @ given by equation (6) and Z(x,y,t) by equation (9). Thus, 

i,(X,y,Ok) = +6 az(Txry) + iE.Z(X,y) 
[- I 

(11) 

(12) 

At infinity, the unsteady velocity components must vanish in an appropriate 
fashion. 



In transonic and supersonic flows, it is also necessary, in general, 
to provide appropriate relations for the discontinuous changes in velocity 
that occur at shock surfaces. However, in the case of sonic and near-sonic 
flows which are considered in this report, for large classes of thin air- 
foils and wings with convex contours at zero or small angles of attack, the 
shock waves present originate at the trailing edge. For small amplitude 
oscillations, they remain substantially fixed at that location and do not 
require further attention. However, we note that in general even for these 
classes of shapes, at Mach numbers in the lower transonic regime when shock 
waves appear on the upper and/or lower surface and at Mach numbers in the 
upper transonic regime when bow shocks appear, these shock relations must 
be properly accounted for. 

Finally, the pressure coefficient for the thin wing case is given by 

C 
P= + R.P. (Gx + 

X 1 (13) 

while for slender bodies additional terms, as usual, appear (see Similarity 
Equations for Axisymmetric Flows). 

Similarity Equations for Two-Dimensional Flows 

By using the method of matched asymptotic expansions, it can be shown 
that for two-dimensional flow the potentials ($J~, $) can be expressed in 
the similarity form 

41 (x,z) = EF(X,<) + O(E2) (14) 

hx.z) = +(x,5) + Ok:) (15) 

where 

-c2 
I 

l/3 E = 
M:(Y + 1) 

(16) 

(17) 
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5 = + 1)-r 1'3z 1 (18) 

and the similarity potentials (T, i, Satisfy the following differential 
equations and boundary conditions 

5 - 
X 1 xx + oc5 = 0 (19) 

- 
(20) 

+; F 
xx 55 = Txx + iK, 1 ;X 

- z K,; 

-. 
Os(x,O~) = 1: d"Z(x) - dx + ii;‘i(x) 

I 

where 

ML - 1 
K1 = 

[M;-r(y + 1,1 2'3 i 

K, = * i = 2k[r(vM;: l)]z'3 

The physical pressure coefficient C 
P 

can be represented by 

C C 
P= PI + R-P- CPe c 

v ikt 
> 

with ;: 
P 

defined by equation (13), or in similarity form by 

C 
P 

= EC 
P 

+ E,R.P. c epe iT;t 
1 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 
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where F P and e are the similarity forms of the steady and unsteady 
pressure coeffici%ts and are given by 

c = 
P 

- 2 TX 

; = 
P 

-2{ix + iXi} 

(27) 

(28) 

Thus, the differential equation and boundary condition for the unsteady 
component can be expressed in the compact form 

oxx + x25x + A, = 5 
55 (29) 

$(x,0+) = k f(x) (30) 

where 

Xl - K, + Fx (31) 

A2 
- Txx + iK, (32) 

A, E -;K2 

f(x) : w + iiTZ(x) 

(33) 

(34) 

so that, depending upon the value of A,, the following set of equations 
must be sol.ved: 

(1) Sonic Equation (x = x*, A1 = 0) 

(R.P. {A,} > 0) 

(2) Supersonic Equation (x > x*, x1 > 0) 

oxx + x2zx + A,% = (DC5 

(3) Subsonic Equation (x<x", x CO) 
1 

c- A,1;,, - x,5, - A, + zcr; = 0 

(35) 

(36) 

(37) 
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where x* denotes the location of the steady flow sonic point, i.e., . 
where A, = 0. 

The occurence of the three fundamentally different equations for 1 
is necessary and is a result of the unsteady flow disturbances riding 
on the basic characteristics of the steady flow which contains subsonic 

(Al < 01, sonic (X1 = 0), and supersonic (X1 > 0) regions. The regions 
in which the various solutions will apply can be seen more clearly in the 
figure below, which represents schematically the typical steady surface 
pressure distribution on a thin, convex airfoil at M, = 1. 

C 0 
PI 

t 

The solution for the sonic region (2) must merge continuously with that for 
the subsonic region (1) ahead of it and the supersonic region (3) behind it. 

With regard to the h30 term which appears in the preceeding equa- 
tions, if we were to restrict the analysis to slowly unsteady nonlinear 
motions, then this term, which results from the M2$ cr2 tt term in equation (l), 
could be legitimately omitted (cf. eqs. (1) and (4)). However, it appears 
that no undue complications arise from retaining this term. Consequently, 
the analysis and theory presented in this report are applicable, without 
restriction, to all frequencies. 

Local Linearization Method 

The local linearization method, originated by Spreiter and Alksne 
(refs. 14, 17, and 18), was developed as an approximate method for solving 
the nonlinear transonic steady flow equation (5), although the basic ideas 
of the technique are apparently-applicable to a large number of both linear 
and nonlinear problems. It has been applied successfully in the past to 
transonic flows past a wide variety of thin airfoils (refs. 14, 15, and 16), 
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slender bodies of revolution (refs. 15, 18, and 19) and wings of finite 
span (ref. 17), and more recently to even more complex shapes, including 
nonaxisymmetric bodies and wing-body combinations (refs. 8, 9, and 10). 
With regard to the present problem, the procedure for determining the 
local linearization solution for the unsteady component i is to replace 
temporarily the variable coefficients (I,, X2) by constants, solve the 
simplified equations (35), (36), and (37) for h&c), calculate the un- 
steady surface acceleration d2z(x,0)/dx2, then replace the constants 

(Al, X2) by the functions they originally represented, and finally integrate 
the resultant second-order ordinary differential equation to obtain both 
%x(x,0) and 5(x,0) as are required (see eq. (13)) to determine the unsteady 
surface pressure. 

Solutions of equations 
stants have been determined 

X 

(35), (36), and (37) with (X1, X2) as con- 
and are given for the sonic case (hl = 0) by 

(~(Xlr))sonic = ~ 
d 

f(5)e 
2 0 $T-T dc (38) 

for the supersonic case (X1 > 0) by 

(h5))Super = 
sonic 

f (S)e 
- A, (x-S) 

Io[A2vm]dC (39) 

and for the subsonic case 

(g(x,c)) sub = 
sonic 

(Xl < 0) by 

1 

I 

- A, (x-E.1 
f (C)e K. [- A2qw]dE 

(40) 

where A, and A, are defined as 

(41) 

ii 

(42) 
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and where I, and K, are zero-order modified Bessel functions of the 
first and second kind, respectively. As x + x* (i.e., as X, + 01, it 
can be shown that the supersonic and subsonic solutions (and their deri- 
vatives) given by equations (39) and (40) uniformily converge to the sonic 
result given by equation (38) as they must. 

Application of the local linearization method, together with some 
manipulation to obtain forms convenient for numerical integration, provides 
the following second-order ordinary differential equations for the unsteady 
surface acceleration d2%(x,0)/dx2. 

d2i(x,0) 
dx2 > sonic 

= 

- -x 
x2 

- f (0)e 

c 

- Yiyx 
f'(O)e 

-\/;r 

- 
6 - $E2 x 

/ (fyx) 

>(x-s) 2 - 

+ 2f"(x) / e 

2 

a5- 

f"(5))e 

0 0 qx 
dS I 

(43) 

d'%(x,O) 
> 

f (O)e 
dx2 super 

- A1x - A+ 10[A2x] + 2 * I, [A2x]} 

sonic 

+ f'(O)e - A1x . IO [ A2,,] + r,.(,,,- A1 (x-s) X 

IO 
A, (x (44) 

(d2~;;o')sub = & 
c 

f(O): A1x - (-A,) - (K. [- A,,] - ; K$- A2x]} 

sonic 

14 

- f(l)e 
A, (1-x) 

+ f' COZe 
- A,x Al (1-x) 

l K. 

- f'(l)e - Ko[-A,(1 -xl] 

(Continued on next page) 
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X 

{ 
f”(E) - f"(x)) e 

- A, (x-S1 
+ * K. - A,(x -5) dC 

I 

1 
+ 

/c 
f”(5) - f"(x)) eA1 

X 

(S-x) 
- K. C - A, (5 - xl dE I 

X 
+ f"(x) 

/ 

- A, (x-E) 
e - A, (x - 5) 1 0 

(x - 5) A, (E-x) 
2 - A2 (5 -xl 

I 

+ In 

- A, (' ; x, ]di. - x(ln[- A, $]-l} 

- A, (1 ; x, - 1 1 ,>I (45) 

where now (X,, X2) and, consequently, (A,, A2) are functions of x only, 
i.e. 

Xl = Fx(X,o) + K, (46) 

A, = TX, (x,0) + iK, (47) 

In order to integrate equations (43), (44), and (45), two boundary 
conditions are required. These are provided, in direct analogy to the 
local linearization solutions for the steady case, by requiring that at 
the steady-state sonic point x* 

15 



~(X*,O) = (~Cx*‘loi> sonic = (48) 

x 
3 

d;(x*,O) = d;l(x*,O) 
dx dx 

c 

- - x* 
x * 

f(O)e 

where x2* = X,(x*) = ~xx(~*rO) + iK2. 

For numerical evaluation,moreconvenient forms of equations (48) and 
(49) are 

T/z -A52 
+ 2f'(x*) 

/ 

2 e dS 
0 

x3 - - (x*-s) 
C f'(x*) - f'(C)] e "* 

vm 
dC I (51) 

Although in their general form, equations (43), (441, and (45) appear 
formidable, for certain oscillatory motions, they simplify considerably. 

For example, for plunging oscillations where il (xl = 1 so that f(x) = ii;, 

we have 
16 



d2i(x,0) 
dx2 sonic 

("2;;;o')super = 2 A,e- A1x * {IO [A2x] - > I, [A2x]) 

(52) 

(53) 

sonic 

(d2y::oJ ) sub = $&$ A1[e- A1x-@o[- A,,]- ;K1 [- A2x]) 

sonic 

- eA1(l-x)-(KO [- A2(l-x)] + 2 Kl[- A2(1-X) (54) 

Edge Correction for Subsonic Potential 

Because of the absence of upstream influence, the sonic and supersonic 
sblutions given above are complete, and no further boundary conditions for 
the wake or for points ahead of the airfoil are required. For the subsonic 
solution, however, these additional conditions must be taken into account. 
For purely subsonic (X1 < 0 everywhere) unsteady lifting flows, these 
requirements on % are shown in the figure below 

Z 

- ix(x,O) + iEG(x,O) = 0 

A, < 0 

where the condition that %(x,0) = 0 ahead of the airfoil insures the 
physical requirement that no discontinuity occurs in i when crossing the 
z=o line, and the condition that sx(x,O) + i.x$(x,O) = 0 in the wake 
insures the continuity of pressure along that line. For a supersonic 
trailing edge, which is the situation for the Mm = 1 flows considered 
herein, the wake condition can be dropped. To satisfy the condition that 

G(x,O) = 0 ( - m < x < 0) (55) 
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an additional potential, A;, must be added to 1 subsonic given by equa- 
tion (40) such that A% satisfies the subsonic differential equation (37), 
cancels the effect of s subsonic ahead of the airfoil, 

A~(x,O) = - ~subsonic(x'O) ( - m < x < 0) (56) 

and does not alter the boundary condition satisfied by ~subsonic on the 
airfoil surface. This can be accomplished by requiring that (see ref. 1) 

AzZ(x,O) = 0 (0 < x < a) (57) 

With these conditions, the solution for A; has been found and on the 
x-axis is given by 

Ai(x,O) = f(E)e 
- A, (x-5) m 

/ * e-Il+ylE1' x 

0 

KO - A2K1 + 5) 

I 

dE $5 (58) 

It can be shown that in the vicinity of the steady sonic point (i.e., 
as x + x*, x1 + 01, the contribution of Al (and its derivatives) to the 
unsteady pressure distribution uniformily go to zero. Consequently, the 
major contribution of A0 occurs in the vicinity of the leading edge, so 
that Ai can be regarded as essentially an edge-correction. We note that 
in the numerical results presented in this report, A& has not been 
included. 

Similarity Equations for Axisymmetric Flows 

An analysis parallel to that used for the two-dimensional case has 
been carried out for axisynunetric flows in order to establish in that 
situation the governing equations and boundary conditions for the unsteady 
component. By splitting the potential into a steady and unsteady component, 

@(X,r,t) = $l(X,r) + R.P. i( x,r)e iS;t 
> (59) 
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and the normalized body ordinates in a similar fashion 

R(x,t) = TV + R.P. c GR(x)eiEt) (60) 

and then using the method of matched asymptotic expansions, the potentials 
(4+ 5) can be given in the following similarity form 

4, (x,r) = Em(x,p) + O(E2) (61) 

i(x,r) = Eli(x,p) + O(E~) (62) 

where 

E = T2 (63) 

E1 = T6 (64) 

P = TMm vm r (65) 

and the similarity potentials (T, i) satisfy the following differential 
equations and boundary conditions 

-K/-F [ X I F +i xx PP 
+Ljr =o 

P P 

dTi(x) lim (pm,) = K(x) dx 
P-+0 

I ; +ti E 
xx PP P +iK, 5 1 X - ,K, 

itl{P",) = ii(x) [G&Q + ii&(x)] 

where K, is given by equation (23) and 

2 E 2 E K2=--=-- y+lE Y + IT2 

The physical pressure coefficient in this case is given by 

C = EE + ~~ R.P. epe i?;t 
P P 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 
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where (E, Ed) are given by equations (63) and (64) and the similarity 
pressure coefficients (F 

P' 
ep) are defined as 

F = 
P 

- 2 TX - T; 

2 =- 
P zLix + i.E + F Z 

P P I 

Thus, the differential equation and surface boundary condition for 
the unsteady component z can be expressed in the form 

oxx + x2+x + x,5 = 3 
PP 

ii0 
P 

(72) 

(73) 

(74) - ( 

lim (pip) = g(x) 
C-0 

(75) 

with Xl, X2, and X3 defined as before by equations (31), (32), and (33) 
and g (xl given by equation (69). 

The solutions to equation (74) for constant (A,, h2) needed as the 
first step in the local linearization method have also been determined. 
They are 

x 
X - e (x - 5) - 

A,P2 

(~(x,P)) sonic = - ~ 
I 

4(x - 5) I 
X - 5 dS 

0 

(Xl = 0) 

(76) 

(Gx,,)) super = - i-- g(C) x 

Sonic 0 

(x-E)]cosh[&--3 ~(x--C)~ -Alp21 dS 
~~~ 

q/(x - Cl2 - AlP2 

(Xl ’ 0) (77) 
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@(x#P)) sub = - $ l g(c) x 
sonic I 

0 

..P[(-:;,, c-i -JF l/(x-w + (-illp2}] 

fi 
dS 

-Cl2 + (-Xl)P2 

(11 < 0) (78) 

RESULTS AND DISCUSSION 

In order to illustrate the general behavior of the unsteady results 
predicted by the present theory, the two-dimensional unsteady local lineari- 
zation equations (43), (44), and (45) have been programmed and results 
obtained for two types of oscillatory motions for two different classes of 
airfoils at M = 1. A member of the first class of airfoils (Guderley 
airfoils) is shown schematically in figure 1 together with its steady-state 
similarity pressure distribution c 

P 
for Mm=l. These airfoils, whose 

normalized ordinates Z, are given by (ref. 14), 

Z,(x) = g d- + T(X) 3/2(1 - xl (79) 

are characterized by a constant steady-state surface pressure gradient 
acpl/ax in the transonic Mach freeze range, i.e., Mm = 1. Their similarity 
steady surface pressure distribution at MoO = 1 is given by 

c = (y + 1) 1’3 c 
P T 

2/3 P, = 
- g [ g]"3(x - 5) (80) 

The second class of airfoils, shown in figure 2, is composed of parabolic- 
arcs with normalized ordinates given by 

Z,(x) = 2-c(x - x2) (81) 

21 



and with similarity surface pressure distribution at M 03 = 1 represented 
accurately by the local linearization result (ref. 14) 

Fp = - 2 [$ (ln [4x] - 8x + 8x2 + :>I"' (82) 

The two types of oscillatory motions considered are vertical translation 

G = 1) and pitching about the nose (2 = x). 

Figure 3 exhibits the solutions for the normalized magnitude and phase 
of the unsteady surface pressure distributions on the upper surface of a 
6-percent thick Guderley airfoil oscillating in vertical translation 
(plunging) at various reduced frequencies k at Mco = 1. Note that in 
order to provide a form more convenient for comparison, in all of the 
results presented herein for plunging oscillations the magnitude of the 
unsteady pressure distribution has been normalized by 61, rather than the 
usual '6 since in this case G contains a linear factor in E (see 
eqs. (52), (53), and (54)). The results of figure 3 illustrate the pro- 
gression, for a fixed airfoil geometry as 1; goes from large values to 
zero, of the results of the present theory as they converge smoothly to 
the nonlinear quasi-steady result. In particular, we note that for small 
values of Z, i.e., 1; = 0.1, the present results are close to those of 
quasi-steady theory, implying that in the low frequency regime, the non- 
linear thickness effects of the steady flow are of primary influence on 
the unsteady flow and that, for very low frequencies, quasi-steady theory 
can provide a reasonable approximation. 

While figure 3 demonstrates the ability of the present theory to 
converge uniformily to the nonlinear quasi-steady result as 5; + 0, 
figure 4 shows the corresponding ability, as x becomes large, of the 
present theory to converge to linear acoustic theory results. For low T; 
(i.e., R = O.l), figure 4 clearly indicates that linear theory is virtually 
useless (the phase angle for x = 0.1 is off the scale of the plot), while 
at larger values (5; = 2), the results of the present nonlinear theory and 
linear acoustic theory are converging. At ‘j;=5, the results are 
essentially identical. 

Figures 5 and 6 show the analogous results of figures 3 and 4 for a 
6-percent thick parabolic-arc airfoil. Figure 5 demonstrates that, as 
was the case for the Guderley airfoil, the present theory moves smoothly 
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toward the quasi-steady result as E becomes small, while figure 6 
illustrates the corresponding convergence to linear theory as E becomes 
large. In particular, we note in comparing figures 4 and 6, that as E 
becomes large, the results for both the Guderley airfoil and the parabolic- 
arc airfoil uniformily approach each other (as well as linear theory), 
which agrees with the concept that for large j? the unsteady motion 
becomes independent of the profile geometry. 

In figure 7(a) and (b), the normalized magnitude (Icp//6) and phase 
of the unsteady pressure distribution arepresented for a 6-percent thick 
Guderley airfoil oscillating in pitch about the nose at MEO = 1. For this 
unsteady motion, we note again the smooth variation of the present theory 
to the quasi-steady result as E'- 0. Figure 8(a) and (b) compares these 
same results with linear theory. This figure demonstrates that for pitching 
oscillations, as was the case for plunging motion, linear theory is in 
serious error for E less than 1. For E = 2, the magnitude of Cp pre- 
dicted by linear theory is in good agreement with the present nonlinear 
results while the phase is only in fair agreement. At E= 5, both magni- 
tude and phase are essentially identical to the present theory. Figures 
9(a) and (b) and 10(a) and (b) show the corresponding results for a 6- 
percent thick parabolic-arc airfoil. These demonstrate virtually the same 
behavior as those shown for the Guderley airfoil. 

Since all the results presented thus far have been for a fixed thick- 
ness ratio, in order to demonstrate explicitly the importance of nonlinear 
thickness effects we have prepared figure 11 which shows, for a fixed 
reduced frequency (z = O.l), the normalized magnitude (ICpl/SE) and phase 
of the unsteady surface pressure due to plunging oscillations of various 
thickness-ratio parabolic-arc airfoils. We note the enormous change in 
both magnitude and phase as 'I increases only slightly from zero (for 
which the present theory and linear acoustic theory are the same) to one- 
percent thickness ratio (T = 0.01). These results demonstrate quantita- 
tively both the importance of thickness effects and the inadequancy of 
linear theory at low frequencies, even for exceptionally thin airfoils. 
Figure 12 shows similar results for the higher reduced frequency i; = 1.0. 
In this case, the differences in the magnitude of the unsteady pressures 
for the various thickness ratios are not nearly as great as for r; = 0.1 
and also are largely restricted to the aft portion of the airfoil. The 
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phase angles, which are generally more sensitive to change remain somewh'at 
separated for each thickness ratio. Nevertheless, the trend of all the 
curves to move toward the zero thickness (linear) result is clear. This 
trend is notably demonstrated in figure 13 which shows the analogous 
results for F = 10. In this case, there is essentially no difference in 
the magnitude or phase angle for the various thickness ratios from the 
linear (T = O..O) result, except near the tail, where presumably the flow 
finally has had enough time to react to some of the nonlinear effects of 
thickness in the steady flow. 

CONCLUDING REMARKS 

Theoretical analysis has been carried out to develop the basis of a 
nonlinear, unsteady, small-disturbance the‘ory valid for all frequencies 
which is capable of predicting transonic inviscid flows about thin airfoils 
undergoing both rigid body and elastic oscillations at Mm = 1. The theory 
employs the concept of dividing the flow into steady and unsteady components 
and then solves, by the method of local linearization, the coupled unsteady 
equation for the surface pressure distribution. 

Calculated results for two classes of airfoils and two types of 
oscillatory motions indicate smooth convergence to the quasi-steady results 

as the reduced frequency based on chord E-+ 0 and to linear acoustic 

results as E becomes large (E 2 2). Moreover, at low frequencies 

(E = 0.1) the theory demonstrates quantitatively both the large nonlinear 
thickness effects induced on the unsteady flow by the steady motion and the 
subsequent inadequacy of linear theory in this frequency regime. 

Application to more complex aerodynamic configurations is possible, 
as shown by the derivation and partial solution of the corresponding 
results for unsteady axisymmetric flows. At this stage of development, 
several details of the theory remain to be worked out. For example, the 
proper unsteady shock relations need to be determined and applied, both 
to surface and bow shocks, and several questions concerning the error 
incurred in the unsteady surface pressure by using the local linearization 
approximation need to be investigated. Experimental verification of the 
theory is essential at this stage and while we are unaware of any data 
suitable for comparison with the preliminary results presented herein, 
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future work should be directed toward those configurations for which 
experimental data exists. Finally, the results obtained in this prelim- 
inary investigation strongly suggest that further development and analysis, 
to extend and refine this promising technique, be carried out as soon as 
possible in order to provide a practical and accurate aerodynamic tool for 
analyzing unsteady transonic flutter and stability problems. 

Nielsen Engineering & Research, Inc. 
Mountain View, California 

November, 1972 
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Figure 1. -Similarity form of steady surface 
pressure distribution for a family of 

affinely-related Guderley airfoils at 
%3 = 1 according to the method 

of local linearization. 
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Figure 2. -Similarity form of steady surface 
pressure distribution for a family of 
affinely-related parabolic-arc airfoils 
at M, = 1 according to the method of 

local linearization. 
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Figure 3. -Magnitude and phase of unsteady 
pressure distributions on the upper 

surface of a 6-percent thick Guderley 
airfoil oscillating in vertical translation 
at various reduced frequencies 1 atMm=l. 
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Figure 4. -Comparisons of local linearization 
unsteady pressure distributions given 

in Figure 3 with linear theory. 
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Figure 5. -Magnitude and phase of unsteady pressure 
distributions on the upper surface of a 6-percent 

thick parabolic-arc airfoil oscillating in vertical 
translation at various reduced frequencies 

?t at M,=l. 
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Figure 6.- Comparisons of local linearization 
unsteady pressure distributions given 

in Figure 5 with linear theory. 
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Figure 7(a). -Magnitude of unsteady pressure distributions 
on the upper surface of a 6-percent thick Guderley 

airfoil oscillating in pitch about the nose at 
various reduced frequencies E at M,=l. 
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Figure 7(b) .-Phase of unsteady pressure distributions 
on the upper surface of a 6-percent thick Guderley 

airfoil oscillating in pitch about the nose at 
various reduced frequencies R at Mm=l. 
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Figure 8(a) .-Comparisons of the magnitude of the 
local linearization unsteady pressure 
distributions given in Figure 7(a) with 

linear theory. 
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Figure 8(b) .-Comparisons of the phase of the local 
linekization unsteady pressure distributions 

given in Figure 7(b) with linear theory. 
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Figure 9(a). -Magnitude of unsteady pressure distributions 
on the upper surface of a 6-percent thick parabolic-arc 
airfoil oscillating in pitch about the nose at various 

reduced frequencies E at Mm = 1. 
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Figure 9(b) .-Phase of unsteady pressure distributions on 
the upper surface of a 6-percent thick parabolic-arc 

airfoil oscillating in pitch about the nose at 
various reduced frequencies i; at M, = 1. 
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Figure 10(a). -Comparisons of the magnitude of the local 
linearization unsteady pressure distributions 

given in Figure 9(a) with linear theory. 
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Figure 10(b) .-Comparisons of the phase of the local 
linearization unsteady pressure distributions 

given in Figure 9(b) with linear theory. 
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Figure 11. -Magnitude and phase of unsteady pressure 
distributions on the upper surface of parabolic-arc 
airfoils having various thickness ratios oscillating 

in vertical translation at the reduced frequency 
I? = 0.1 with Mm = 1. 
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Figure 12. -Magnitude and phase of unsteady pressure 
distributions on the upper surface of parabolic-arc 
airfoils having various thickness ratios oscillating 

in vertical translation at the reduced frequency 
R= 1.0 with M, = 1. 
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Figure 13. -Magnitude and phase of unsteady pressure 
distributions on the upper surface of parabolic-arc 
airfoils having various thickness ratios oscillating 

in vertical translation at the reduced frequency 
E= 10. with M = 1. OD 
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